Spare parts stored digitally & 3D printed when needed, a competitive advantage (Video)

Spare parts stored digitally & 3D printed when needed, a competitive advantage

Five percent of spare parts could currently be stored in digital warehouses. This would make parts more quickly and easily available, while creating considerable cost savings. Digitalisation will also enable individual customisation and an increase in the intelligence of parts. 

A two-year project involving companies, and led by VTT Technical Research Centre of Finland and Aalto University, investigated how businesses can gain a competitive advantage from digital spare parts.

Spare parts and all of the related information can be stored and transferred digitally. Availability increases when a new spare part can be 3D-printed according to need, close to the end user.

“Industry now has every opportunity to boost business by making spare parts into a focus area of development. Around five percent of parts can currently be manufactured digitally, according to need. 3D printing technology has reached the stage where high-quality manufacturing is possible,” says Sini Metsä-Kortelainen, VTT’s project manager for the project. Continue reading “Spare parts stored digitally & 3D printed when needed, a competitive advantage (Video)”

VTT Finland is developing 3D printing materials for wound care

VTT Finland is developing 3D printing materials for wound care

Cellulose nanofibrils have properties that can improve the characteristics of bio-based 3D-printing pastes. VTT Technical Research Centre of Finland is developing a 3D wound care product for monitoring wound condition in hospital care. However, the first commercial nanocellulose applications will be seen in indoor decoration elements, textiles and the production of mock-ups.

3D printing has proven to be an efficient manufacturing method for complex, customised and light structures. In addition to thermoplastics, 3D printing materials include metals, ceramics and foodstuffs. The range of biomaterials in 3D paste printing is still fairly limited, since pastes pose unique challenges: their structure must not collapse during printing and the objects manufactured must remain sufficiently strong, rigid or flexible after drying. In 3D biomaterial filaments, however, commercial products already exist. Continue reading “VTT Finland is developing 3D printing materials for wound care”