New frontier in 3D Printing materials: fur, brushes and bristles (Video)

These days, it may seem as if 3-D printers can spit out just about anything, from a full-sized sports car, to edible food, to human skin. But some things have defied the technology, including hair, fur, and other dense arrays of extremely fine features, which require a huge amount of computational time and power to first design, then print.

Now researchers in MIT’s Media Lab have found a way to bypass a major design step in 3-D printing, to quickly and efficiently model and print thousands of hair-like structures. Instead of using conventional computer-aided design (CAD) software to draw thousands of individual hairs on a computer — a step that would take hours to compute — the team built a new software platform, called “Cilllia,” that lets users define the angle, thickness, density, and height of thousands of hairs, in just a few minutes. Continue reading “New frontier in 3D Printing materials: fur, brushes and bristles (Video)”

3D Printed Hair: Fused Deposition Modeling of Soft Strands, Fibers, and Bristles (Video)

Gierad Laput, Xiang ‘Anthony’ Chen, Chris Harrison (UIST 2015)

We introduce a technique for furbricating 3D printed hair, fibers and bristles, by exploiting the stringing phenomena inherent in fused deposition modeling 3D printers. Our approach offers a range of design parameters for controlling the properties of single strands and also of hair bundles. Continue reading “3D Printed Hair: Fused Deposition Modeling of Soft Strands, Fibers, and Bristles (Video)”