3D printed nanostructures made entirely of graphene

Graphene has received a great deal of attention for its promising potential applications in electronics, biomedical and energy storage devices, sensors and other cutting-edge technological fields, mainly because of its fascinating properties such as an extremely high electron mobility, a good thermal conductivity and a high elasticity.

The successful implementation of graphene-based devices invariably requires the precise patterning of graphene sheets at both the micrometer and nanometer scale. Finding the ideal technique to achieve the desired graphene patterning remains a major challenge.

3D printing, also known as additive manufacturing, is becoming a viable alternative to conventional manufacturing processes in an increasing number of applications ranging from children toys to cars, fashion, architecture, military, biomedical science, and aerospace, to name a few.

For the first time, researchers have now demonstrated 3D printed nanostructures composed entirely of graphene using a new 3D printing technique. The research team, led by Professor Seung Kwon Seol from Korea Electrotechnology Research Institute (KERI), has published their findings in the November 13, 2014 online edition of Advanced Materials (“3D Printing of Reduced Graphene Oxide Nanowires”)

“We developed a nanoscale 3D printing approach that exploits a size-controllable liquid meniscus to fabricate 3D reduced graphene oxide (rGO) nanowires,” Seol explains to Nanowerk. “Different from typical 3D printing approaches which use filaments or powders as printing materials, our method uses the stretched liquid meniscus of ink. This enables us to realize finer printed structures than a nozzle aperture, resulting in the manufacturing of nanostructures.” … (Read more)

Source: NanoWerk.com